新聞動態(tài)

News Center

optiSLang助力優(yōu)化微環(huán)調(diào)制器與 Lumerical 仿真自動化

發(fā)布日期:
2024-01-09

瀏覽次數(shù):


本示例演示了如何使用Ansys optiSLang 來驅(qū)動Lumerical 不同求解器實現(xiàn)微環(huán)調(diào)制器的仿真自動化以及使用 optiSLang 的多目標優(yōu)化能力實現(xiàn)微環(huán)調(diào)制器 Q 因子和調(diào)制效率的最佳化仿真。


綜述

微環(huán)調(diào)制器是一個復(fù)雜且大尺寸的系統(tǒng),其由一系列的子系統(tǒng)組成,包括如環(huán)形波導(dǎo)耦合,相位調(diào)制臂等。在本示例中,我們將使用 Lumerical FDTD 來仿真求解Throuph port 的transmission計算微環(huán)的 Q 因子,使用 Lumerical MODE 和 Charge 來計算有源部分的相位調(diào)制臂在不同偏壓下的載流子濃度分布以及有效折射率,損耗和群折射率。最終我們借助以上不同求解器仿真求解的結(jié)果,使用 Lumerical *.lsf腳本后處理實現(xiàn) Q 因子和調(diào)制效率的計算。以上工作流我們都將基于 optiSLang 平臺實現(xiàn)仿真自動化,同時實現(xiàn)Q 因子和調(diào)制效率的優(yōu)化,此示例中我們期望優(yōu)化目標 Q 因子在 20000 左右且調(diào)制效率至少為 1.2e-11 m/V.


第一步:基礎(chǔ)仿真模型搭建與optiSLang workflow 測試

關(guān)于Lumerical FDTD, Charge 和 MODE 針對微環(huán)調(diào)制器的仿真模型搭建和求解,本示例不再贅述,詳細內(nèi)容可參考官網(wǎng)案例:Ring Modulator


接下來將以 FDTD 為例,演示Lumerical 和 optiSLang 的集成自動化。


以下流程圖為optiSLang 的parametric 系統(tǒng),用于用戶的初始化設(shè)置及 workflow 驗證。


optiSLang助力優(yōu)化微環(huán)調(diào)制器與 Lumerical 仿真自動化


點擊 FDTD 編輯界面,進入 setting 來定義 optiSLang 需要調(diào)用的Lumerical 求解器以及需要讀取的腳本 coupling_coefficient_calc_FDTD.lsf 。如下圖所示。


optiSLang助力優(yōu)化微環(huán)調(diào)制器與 Lumerical 仿真自動化


在Parametrization編輯界面,導(dǎo)入 FDTD 需要運行的工程文件 coupler_region.fsp并加載,在 Input 和 Output 界面下即可顯示出 optiSLang 所讀取的 *.fsp 文件和*.lsf 中所定義的變量,這些變量即可作為后期 optiSLang優(yōu)化所需要的變參和響應(yīng)結(jié)果,如下圖所示我們將*.fsp 文件中 model 下定義的變量 coupling length 和 gap 作為輸入變參 (use as parameter), 同時我們將 *.lsf 中定義的 transmission 定義成中間變量 trans (output slots)用于傳輸給后一步腳本后處理作為輸入。


optiSLang助力優(yōu)化微環(huán)調(diào)制器與 Lumerical 仿真自動化


打開 FDTD 文件和腳本可以確認模型和腳本中所定義的變量在上一步中是被 optiSLang 正確讀取的。


optiSLang助力優(yōu)化微環(huán)調(diào)制器與 Lumerical 仿真自動化


基于上述的定義方式,即可調(diào)用optiSLang 來呼叫 FDTD 并自動運行仿真文件coupler_region.fsp和腳本coupling_coefficient_calc_FDTD.lsf.,同時將仿真計算結(jié)束后的結(jié)果傳輸給下一步繼續(xù)運行。


同樣的邏輯,我們也需要在 optiSLang 中定義調(diào)用 Charge 和 MODE 求解器并仿真計算不同偏壓下的載流子濃度分布以及有效折射率,損耗等必要結(jié)果,并最終通過*.lsf腳本后處理讀取上述幾個不同求解器的仿真結(jié)果實現(xiàn) Q 因子和調(diào)制效率的計算。Script 模塊的仿真設(shè)定如下圖所示,可以看到其通過定義 Input slots 來自動讀取前面步驟的計算結(jié)果,并將腳本計算的 Q, mod_eff和FSR 作為結(jié)果輸出。


optiSLang助力優(yōu)化微環(huán)調(diào)制器與 Lumerical 仿真自動化


以下動圖展示了整個 Parametric System 的工作流測試過程,可以看到我們的初始點設(shè)定和目標設(shè)定,點擊運行即可觀察到 optiSLang 分別去自動調(diào)用 Lumerical 的不同求解器去運算基于初始設(shè)計點的結(jié)果,得到 Q = 530.565, mod_eff = 2.24e-11, FSR = 1e-8, 距離我們的目標 Q ~ 20000 ,mod_eff ?> 1.2e-11 m/V 尚有差距。


optiSLang助力優(yōu)化微環(huán)調(diào)制器與 Lumerical 仿真自動化

點擊圖片即可跳轉(zhuǎn)原文觀看視頻


第二步:參數(shù)敏感性分析與最佳元模型建立 (AMOP)

基于上述步驟,我們已經(jīng)搭建完善的 optiSLang 與 Lumerical 的仿真自動化工作流。此步驟我們將演示如何進行參數(shù)敏感性分析以及 optiSLang 的最佳元模型搭建,optiSLang 最佳元模型是基于 optiSLang 特有的自適應(yīng)采樣建模,通過對樣本空間的分析構(gòu)建一套擬合Lumerical 求解器的數(shù)學(xué)模型,并用于后續(xù)快速的優(yōu)化求解。我們只需要將 sensitivity wizard 拖拽入第一步測試的 Parametric System 即可生成 AMOP (Adaptive Metamodel of Optimal Prognosis) 模型,如下圖所示。


optiSLang助力優(yōu)化微環(huán)調(diào)制器與 Lumerical 仿真自動化


此步驟中找到適當數(shù)量的樣本空間很重要,增加采樣數(shù)可以獲得更好的元模型,同時也意味著增加完成仿真所需的時間(此步驟的每一步采樣均需要調(diào)用 Lumerical 做仿真求解,以幫助 optiSLang 尋找最佳化擬合元模型)。這里我們做了 300 個采樣點,可以看到每一個隨機采樣下的輸入輸出值,這里有一點需要強調(diào),optiSLang 支持輸入?yún)?shù)的多種采樣方式,如連續(xù)采樣,離散采樣,高斯采樣等。


optiSLang助力優(yōu)化微環(huán)調(diào)制器與 Lumerical 仿真自動化


300個采樣仿真結(jié)束之后,我們在 post-processing中即可看到元模型的擬合結(jié)果以及各個輸出對輸入的依賴度,即 CoP (Coefficient of Prognosis) matrix,也就是我們所說的參數(shù)敏感性分析。如下圖所示,我們發(fā)現(xiàn)元模型對 FSR 的擬合度可以達到 99.9% 且coupling_length 這一參數(shù)對 FSR 影響最大,同樣的對 Q 的擬合度可以達到97.7%且 gap 和 coupling_length 對其影響較大,而 mod_eff的結(jié)果則更多和摻雜有關(guān),這一結(jié)果也符合我們的經(jīng)驗預(yù)測?;诖嗽P蛿M合,我們便可以進行接下來的優(yōu)化求解,同時在優(yōu)化過程中,我們僅僅針對此步驟分析出對優(yōu)化目標影響最大的gap, coupling_length 還有摻雜等關(guān)鍵參數(shù)進行變參優(yōu)化,其他參數(shù)保持常量。


optiSLang助力優(yōu)化微環(huán)調(diào)制器與 Lumerical 仿真自動化


第三步:優(yōu)化和最佳設(shè)計驗證

此步驟我們將演示如何進行大批量的數(shù)據(jù)優(yōu)化和數(shù)據(jù)驗證。我們只需要將 Optimization wizard 拖拽入第二步測試的 AMOP 即可生成 Evolutionary Algorithm模型,如下圖所示。


optiSLang助力優(yōu)化微環(huán)調(diào)制器與 Lumerical 仿真自動化


在優(yōu)化設(shè)定中,基于第二步參數(shù)敏感性分析的結(jié)果,我們只需要將gap, coupling_length 還有摻雜進行變參優(yōu)化,其他參數(shù)保持常量。optiSLang 中有多種不同的優(yōu)化算法以及設(shè)定,這里我們選擇使用 Evolutionary Algorithm 優(yōu)化算法并保持默認設(shè)定,同時定義執(zhí)行10000 次采樣的全局優(yōu)化。如下圖所示。


optiSLang助力優(yōu)化微環(huán)調(diào)制器與 Lumerical 仿真自動化


由于我們在第二步已經(jīng)找到一個較好的元模型,因此這里的 10000 次優(yōu)化將使用第二步所構(gòu)建的元模型求解而非 Lumerical 求解器,計算速度也會大大提升,在本示例中我們執(zhí)行 10000 次優(yōu)化僅用 121 秒。


優(yōu)化計算完成后,optiSLang默認會隨機進行 20 個采樣點的驗證,即返回給 Lumerical 再進行這 20 個采樣點的求解來得到Lumerical 求解器的仿真結(jié)果,由上圖中 “Validator System” 執(zhí)行。


下圖展示的是采用元模型執(zhí)行10000次的優(yōu)化過程以及所有的輸入和輸出結(jié)果。


optiSLang助力優(yōu)化微環(huán)調(diào)制器與 Lumerical 仿真自動化


點擊圖片即可跳轉(zhuǎn)原文觀看視頻


打開后處理,首先針對我們的優(yōu)化目標:Q 因子在 20000 左右且調(diào)制效率至少為 1.2e-11 m/V,我們在 Parallel coordinates plot 中做初步篩選,如下圖所示:


optiSLang助力優(yōu)化微環(huán)調(diào)制器與 Lumerical 仿真自動化

點擊圖片即可跳轉(zhuǎn)原文觀看視頻



篩選后采樣點的Pareto 結(jié)果如下圖所示:


optiSLang助力優(yōu)化微環(huán)調(diào)制器與 Lumerical 仿真自動化


圖中紅色點所示的 Pareto front 即為我們在多目標優(yōu)化過程中,optiSLang 尋找到的一組最優(yōu)解,這里由于我們所做的是多目標優(yōu)化,不同目標之間會需要有一些權(quán)衡取舍,因此非唯一解也是合理的結(jié)果。綠色點即為返回給 Lumerical 求解器驗證后的結(jié)果。這里我們選取最佳設(shè)計點 #9032,可以看到Q 為 18478,調(diào)制效率為 2.6e-11 m/V,F(xiàn)SR 為 9.6 e-9 ,同時也可以看到其對應(yīng)的輸入?yún)?shù)。


optiSLang助力優(yōu)化微環(huán)調(diào)制器與 Lumerical 仿真自動化


基于此,我們便完成了使用 optiSLang 和 Lumerical針對環(huán)形調(diào)制器的自動化仿真和優(yōu)化,此外 optiSLang 還支持定義參數(shù)的擾動和魯棒性分析,這里我們不做重點介紹。?


第四步:總結(jié)?

1. optiSLang 當前完全集成 Lumerical 各類型求解器,包含 FDTD, RCWA, FDE, EME, varFDTD, CHARGE, HEAT, DGTD, FEEM, MQW, INTERCONNECT.?

2. optiSLang 支持Lumerical 仿真自動化,支持各求解器之間的自動化數(shù)據(jù)交互,數(shù)據(jù)后處理以及全流程自動化求解。?

3. optiSLang 特有的多目標優(yōu)化能力和元模型理論可以幫助用戶快速找到最佳優(yōu)化設(shè)計,節(jié)省迭代時間。?

4. 基于上述能力,Lumerical 用戶可以實現(xiàn)各種不同應(yīng)用下的仿真自動化和優(yōu)化流程,實現(xiàn)更高效的仿真。?

相關(guān)閱讀

Lumerical 表面浮雕光柵仿真設(shè)計

Lumerical 2023R2 發(fā)布 | 圖形處理器,超透鏡,鈮酸鋰調(diào)制器等重磅來襲!

2023R2 | Speos 新功能介紹

Lumerical 次波長數(shù)據(jù)模型與幾何光學(xué)聯(lián)合仿真

Lumerical光纖布拉格光柵溫度傳感器的仿真模擬

使用 Lumerical 對 VCSEL 激光器進行增益仿真

使用 Ansys Lumerical STACK 仿真抗反射偏振器件

Lumerical 單行載流子光電探測器仿真方法

案例 | 使用 Lumerical STACK 求解器優(yōu)化 OLED


optiSLang助力優(yōu)化微環(huán)調(diào)制器與 Lumerical 仿真自動化


相關(guān)推薦

【Lumerical系列】一種高效多模耦合/(解)復(fù)用的新方案
本期文章將介紹一種通過引入硅平面光波電路(PLC)作為中間體來實現(xiàn)高效多...
用于光子集成電路的集成微透鏡和光柵耦合器
本文介紹了一種用于光子集成電路光纖-波導(dǎo)耦合系統(tǒng)的多尺度仿真工作流程。光...
【2024 R2】Ansys Fluent 電池?zé)崾Э睾彤a(chǎn)氣模型案例教程
01簡要說明‐ Ansys Fluent 2024R2版本正式發(fā)布了電池...
Zemax | 如何在OpticStudio內(nèi)對斜切端面光線進行建模
本文介紹了如何在 OpticStudio 中對具有一定角度斜切端面的接收...